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Abstract: This article gives an overview of the Mechanism Model paradigm. The mechanism model paradigm provides 
a framework to modeling mechanisms for robotic control. The emphasis is on the unification of mathematical models of 
kinematics/dynamics, geometric information and control system parameters of a variety of robotic systems (including 
serial manipulators, wheeled and legged locomotors), with algorithms needed for typical robot control applications.  
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1. Introduction 

The work presented in this paper describes 1) a unified 
approach for modeling the geometric and dynamic 
properties of a variety of robotic systems and 2) generic 
algorithms that operate on the model to perform common 
analyses needed in the control of such systems. The goal 
of this work is to provide a common representation for 
describing mechanical systems including robotic arms 
and wheeled and legged vehicles and provide built-in 
algorithmic functionality (for example, forward and 
inverse kinematics and collision detection) needed for 
typical robot control applications. 
The implementation of this approach will provide the 
Coupled Layer Architecture for Robotic Autonomy 
(CLARAty) (Volpe, Nesnas, Estlin, Mutz, Petras & Das, 
2001), (Nesnas, Wright, Bajracharya, Simmons & Estlin, 
2003), (CLARAty, 2005) on-board software with a more 
generic infrastructure for mechanism modeling and 
analysis. The modeling software covers mobility 
mechanisms, robotic arms, rover masts, and mechanical 
legs. The modeling software will provide the necessary 
information for real-time computation of kinematics, 
dynamics, and collision prediction.  

1.1. Motivation 
Current implementations of kinematic and geometric 
descriptions of mechanisms have different representation 

paradigm, which makes sharing kinematic and dynamic 
information very difficult. Furthermore, it is desirable for 
some applications to treat the mechanism as a whole 
body (for instance when dealing with rover-arm 
coordination algorithms). Some other applications may 
require the treatment of appendages as separate elements. 
For instance when controlling a rover and a mast with 
panoramic cameras.  
A modeling paradigm that supports both views of 
mechanism control and that provides for simplicity of 
information sharing 
A unified modeling approach has the following 
advantages: 

• Allows re-use of kinematic/dynamic and 
geometric information for a variety of robotic 
systems. Particular implementations will be 
instiated by reading in model files that specify  
detailed description of a specific robotic system. 

• Provides centralized storage for managing 
model information. This includes creation, 
deletion, update, extension and reconfiguration 
of the mechanical models. 

• Ensures consistency of the model information 
for use by multiple algorithms.  This simplifies 
the integration of algorithms into the software 
architecture. 
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• Reduces duplication in model representation 
between rover mobility and manipulation 
software.  

• Enables the development of generic algorithms 
for forward, inverse, and differential 
kinematics. In the absence of specialized 
versions, the generic algorithms provide out-of-
the-box functionality.  

• Supports specific implementations to override 
generic algorithms whenever appropriate for 
optimal performance.  

• Enables the verification of specialized 
kinematics algorithms against their generic 
counterparts. 

• Supports a variety of data input models such as 
Denavit-Hartenberg and  zero configuration. 

 
This article contains software requirements for 
developing a unified mechanical model.  It also contains 
requirements for algorithms and describes the interaction 
of the models with the rest of the on-board robotic 
software. In this paper, the term “mechanism” refers to 
any mechanical system and does not imply a closed loop 
mechanical chain. 

1.2. Related work 
Attempts at creating a unified representation for 
mechanism are limited. The approaches found in the 
literature can be used to describe robotic systems from a 
number of system attributes, e.g., kinematic, geometric 
etc. 
The most notable approaches are the DARTS/Dshell 
(Jain, 1991), (Rodriguez, Kreutz-Delgado & Jain, 1991), 
the Open Robot Control Software Kinematics Pagkage 
(OROCOS, 2005), the Operational Software 
Components for Advanced Robotics (OSCAR, 2005), 
(Kapoor & Tesar, 1998), RoboML (RoboML, 2005), 
(Makatchev & Tso, 2000), ORCA (ORCA, 2005), 
(Brooks, Kaupp, Makarenko Williams & Oreback 2005) 
and the Nucleus robotic control toolkit (Nucleus, 2005).  
DARTS/Dshell is a high-fidelity dynamics simulator that 
models the motion of flexible multi-body systems under 
internal and external interactions.  It has been used to 
model robotic systems and spacecraft.  Applications 
include hardware-in-the-loop testing and off-line 
simulations. In the sequel we will show how 
DARTS/Dshell’ model representation is used in the 
mechanism model context. 
The original goal of the OROCOS effort was to develop 
open source software for robotics applications. It has 
since branched into two separate developments: 

• Open Real-time Control Services for real-time 
control applications  

• Open Robot Control Software that provides 
class libraries and a framework for robot 
applications. 

 
The Kinematics Package in OROCOS is at the design 
concept stage and no software has been developed.  It is 

intended to address more general mechanical systems 
and not be restricted to tree-topology systems.  While the 
objectives of the Kinematics Package have been 
documented, the approach to be used for its 
implementation has yet to be clearly defined. 
Furthermore, due to its open source nature and lack of 
funding the future of the Kinematics Package in 
OROCOS is unclear. As a result, the OROCOS 
Kinematics Package currently exists as a collection of 
objectives without a detail description of its approach or 
implementation. 
OSCAR provides utilities in the form of libraries for 
performing computations needed in analysis, real-time 
control or simulation of manipulators. In addition to 
math utilities, it contains algorithms for performing 
generic forward and inverse kinematics, motion planning 
and dynamics. OSCAR offers many alternative options 
in its operations. For example, for motion planning, 
trajectories can be generated using trapezoidal, spline or 
motion blending algorithms. OSCAR currently appears 
to allow only models of serial-chain manipulators. 
OSCAR’s primary application is robotics education. 
While OSCAR provides generic software utilities for 
robot arms (serial-chain manipulators) the approach 
presented in this paper models more general kinematics 
systems. 

1.3. Problem statement 
The CLARAty architecture is a unified and reusable 
software framework that provides robotic functionality 
and simplifies the integration of new technologies on 
robotic platforms. Being a domain-specific robotic 
architecture its objective is to operate a number of 
heterogeneous mobility platforms with different physical 
capabilities (including serial kinematic chains ; e.g., 
manipulators, masts) and hardware architectures.  
The heterogenous narture of the mechanisms supported 
by CLARAty introduces the need to have a unified 
representation covering mechanical and geometric 
properties as well as algorithms needed for typical robot 
control applications. 
Furthermore, to enable CLARAty developers/users to 
build new manipulators and mobility platform models 
more efficiently in a more systematic manner for an 
entire system, there is a need to come up with a unified 
geometric, kinematic, and quasi-static representations of 
mechanisms supporting serial kinematic chains, wheeled 
locomotors, multi-legged locomotors, contact control, 
geometric models for collision detection, generic 
forward/inverse kinematics, and unified model 
specification inputs. 
Although the body of work presented in the literature 
covers different aspects of our problem (e.g., serial 
kinematic chains and real-time control), there is no 
approach that covers all the types of mobilitry 
mechanisms covered in CLARAty. Moreover, 
eventhough the work presented in the literature provides 
algorithms for robot control applications, they all seem to 
lack a very important property, that of geometric 
representation, to allow the integration of collision 
detection algorithms. This functionality is desired in 
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particular when the robot is expected to operate fully 
autonomous and be capable to generate safe commands. 

1.4. Approach 
To provide a unified representation of mechanisms, 
which supports heterogeneous mobility platforms with 
different physical capabilities, the mobility and 
manipulation group in CLARAty has developed a new 
approach to modeling of robotic systems. The approach 
presented in this paper, called Mechanism Model, is a 
software architecture that provides a unified 
representation for robotic systems, which can be used to 
execute real-time control of the mechanism. The unified 
representation is based on the DARTS/Dshell approach. 
The primary differences between the Mechanism Model 
in CLARAty and DARTS/Dshell are: 

• The modeling in DARTS/Dshell is geared for 
high fidelity simulations while the Mechanism 
Modeling of CLARAty is geared for real-time 
high-frequency control and planning.  The latter 
also supports overriding of generalized 
solutions with specialized ones. 

• DARTS/Dshell uses much more detailed 
models (body flexibility, actuator and 
transmission modeling, etc.,) which are needed 
for high-fidelity simulations.  

• Simulation software and control software solve 
complementary problems (e.g. simulation 
software solves the forward dynamics while 
controls software solves the inverse dynamics). 

• DARTS/Dshell makes extensive use of 
recursive algorithms while Mechanism Model 
uses corresponding iterative algorithms, which 
are more amenable for on-board flight 
implementations. 

 
This article is organized as follows: Section 2 provides 
the general requirements the software architecture must 
address. Section 3 presents the design of the mechanism 
model paradigm. Section 4 summarizes the types of 
constraints handled by the architecture. Section 5 
explains the model data input. Section 6 summarizes the 
generic algorithms available in the architecture. Section 
7 presents the relationship of this paradigm in the 
CLARAty framework. 

2. General requirements 

In the design of the Mechanism Model paradigm, we 
separated mechanism models (e.g., kinematics, 
dynamics, etc.) from mechanism control to allow client 
software to use and test the kinematics and dynamics of 
the mechanisms independent of the hardware. 
Furthermore, it was required that the Mechanism Model 
supports the following computations for the mechanism 
model: 

• Kinematics computations—forward, inverse, 
and differential kinematics. 

• Quasi-static computations of forces and torques 
considering: joint flexibility (stiffness), gravity 
force and other applied forces, gravity 
deflection. 

• Environmental contact constraints—position, 
force, torque, and stiffness. 

• Resolution of multiple simultaneous kinematics 
constraints. 

• Collision detection. 
 
Initially, full dynamics computations (inertial forces) will 
not be supported. However, models will support future 
extensions for dynamics computations. 

2.1. Mechanism types 
The types of mechanisms that can be described in the 
Mechanism Model paradigm include: 

• Serial manipulators—multi-degree of freedom 
robotic arms, masts, and legs (e.g. a 5-dof arm 
with a turret gripper carrying multiple 
instruments). 

• Simple closed-chain mechanisms—four- and 
six-bar planar mechanisms (Figure 1). 

• Wheeled locomotors—multi-wheeled 
mechanisms with different drive and steering 
configurations (Figure 2). This includes fully-
steerable (e.g. Rocky 8’s six-wheel drive six-
wheel steering rocker bogie mechanism), 
partially-steerable (e.g, Rocky 7’s all-wheel 
drive front wheel steering mechanism), and 
skid-steerable mechanisms (e.g. ATRV’s). 

• Legged locomotors—multiple legs attached to a 
body, e.g. LEMUR robot (Figure 3).  

• Composite mechanisms—any combination of 
the above types (e.g. Phoenix lander and MER 
rover Spirit and Opportunity (Figure 4)). 

 
In contrast to these types of mechanisms the mechanism 
model software will not directly handle parallel and 
hybrid kinematic structures. However, it is possible to 
model a simple parallel structure as a tree topology by 
breaking the closed chain and solving for the closed 
chain using joint or position constraints (Figure 1). 

Actuated

(a) Four-bar 
mechanism 

Position 
Constraint

(b) Four-bar mechanism 
modeled with either (i) 

position constraint, or (ii) 
with non-linear joint 

constraints
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L1 

L2 

L3 

L0 

θ2(θ1) 

θ3(θ1) 

Non-linear 
Joint Constraint

Actuated

Figure 1. Closed loop kinematic chains 
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3. Mechanism model design 

A mechanism is represented as a tree topology in which 
an arbitrary number of rigid bodies are connected to one 
another via joints. The tree topology captures the 
geometric relationships between all elements in the 
mechanism such as sensors and bodies, and serves as a 
repository of mechanical model information, which 
includes fixed (non-articulated) transformations, joint 
constants that do not depend on articulation values and 
component geometry. As a result, the proposed tree 
representation is stateless: position, velocity, and 
acceleration information relative to an inertial frame is 
not stored in the mechanism model. This is an important 
feature because it will enable various system states to be 
updated at different rates and enable the use of different 
parts of the tree at a time.  It will also allow algorithms to 
use the mechanism model tree to predict future states for 
any given input state.  The trade that is made here is the 
cost of re-computing derived states vs. making copies of 
mechanism model for each client application and 
keeping all their internal state up to date. 
From the Mechanism Model perspective there is a single 
inertial frame, which acts as the root of the tree. This is 
important for creating composite mechanisms from 
identical components.  For example, if we have a six-
legged robot with identical legs, we only need a model 
for one of the legs and we can then create the robot by 
inserting the leg model at the mounting point for each 
leg. 
Geometric information (for example for use in collision 
detection) is kept in the same model tree and it is 
hierarchically defined in terms of the bounding shape 
information of the physical component (Figure 5). 

The geometric description of a body is defined in a 
manner consistent with the bounding shape proposed by 
Leger (Leger, 2002). The following material is adapted 
from the cited work for the sake of completeness of the 
exposition. 
In general, a body contains a bounding shape tree (see 
Figure 5.) that describes containment relationships 
among the geometric objects of a single body. The 
bounding shape tree describes different levels of 
granularity at which the geometry of the object is 
described, having the finest bounding shape resolution at 
the leaves of the tree.  
Bounding shapes are represented either as 2D or 3D 
shapes (e.g. we represent terrain surfaces and walls by 
2D open meshes and manipulator links by 3D shapes 
such as cylinders, boxes, spheres, and/or convex hulls). 

4. Constraint modeling 

There are two types of constraints handled by the 
Mechanism Model: Joint and Cartesian constraints. Joint 
constraints are constraints that couple a joint to another 
through a linear or nonlinear relationship (e.g. 

( )ki qfq = , where q is a generalized joint coordinate). 
Cartesian constraints are further divided into: end 
effector and contact constraint. Contact constraints are 
used to specify the desired surface contact between two 
frames, while end effector constraints are used to specify 
the desired absolute or relative position of a frame.  

5. Model data input 

Mechanism model parameters are specified in an 
eXtensible Markup Language (XML) (The World Wide 
Web Consortium, 2005) input file (refer to (Nesnas, 
Kim, Nayar & Diaz-Calderon, 2005) for a detailed 
description of the XML model data format). Each 
mechanism or appendage is defined in a separate XML 
file and a complete mechanism model is assembled by 
reading in multiple XML files (e.g. for a mars rover we 
need arm model, mast model, and mobility model are 
stored in separate files). 
The mechanism model file defines necessary mount 
points by name to attach appendages defined in separate 
model files. 

(a) Phoenix 
lander 

(b) MER 
rover 

(a) Rocky 8 
rover 

(b) Rocky 7 
rover 

(c) ATRV

Figure 2. Different mobility platforms 

Figure 4. Composite mechanisms 

Figure 3. Legged robot 
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The input parameter file supports the required kinematic 
parameters based on the kinematic representation 
selected as well as supporting the definition of center of 
mass, inertia matrix, bounding shape tree. A number of 
kinematic representations are supported including 
homogenous transform, zero position (also known as 
product of exponentials) (Murray, Li & Sastry, 1994), 
Denavit-Hartenberg where the rerference frame of the i-
th body is located at the i+1-th joint (Paul, 1983), 
(Spong, & Vidyasagar, 1989), and Denavit-Hartenberg 
with Craig’s modification  where the reference frame for 
the i-th body is located at the i-th joint  (Craig, 1989).  
Regardless of the representation selected, model 
parameters are converted to an internal representation, 
which is similar to that used in DARTS/DShell. 
Specifically, we treat each body as having a single joint 
that ties the body to its parent in the mechanism model 
tree. This approach is general enough to enable modeling 
of mechanisms of various types and simplifies the 
software structure (Figure 6). 
The choice of coordinate frames on the bodies is not 
based on DARTS/Dshell but are consisten with the 
following conventions  

• For single degree-of-freedom joints, the z-axis 
is aligned with the articulation axis. 

• For multiple degrees-of-freedom joints, the z-
axis is aligned with at least one joint axis. 

• The body reference frame is located at the 
center of rotation of the revolute joints. 

 
6. Algorithms 

A set of built-in algorithms needed for typical robot 
control applications will be implemented in the software 
package. These include generic forward and inverse 
kinematics algorithms and collision detection between 
objects in the model. These will be extended in the future 
to include gravity compensation and dynamics analysis. 
Facilities will be provided to allow users to by-pass the 
generic built-in algorithms with more-efficient 
customized specific implementations. 

6.1. Forward kinematics algorithm 
The built-in forward kinematics algorithm to determine 
relative positions and orientations between coordinate 
frames in the model will be performed by accumulating 
relative poses between successive frames in the tree 
using tree-traversal iterators to navigate between frames 
on the tree. The user-interface to the software will allow 
users to query a frame in the tree for its pose relative to 
any other frame in the tree. 

Body 
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Arm mount 
Frame  
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Jointi 

Bounding 
Shape Tree 

B2 B3 B3B4

B5

C1

B1

B2 B3
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Figure 5. A mechanical component an its bounding shape tree 
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6.2. Inverse kinematics algorithm 
A built-in generic inverse kinematics algorithm will be 
implemented using a numerical approach. Constraint 
managment software is used to administer the generic 
solution for inverse kinematics problems based on the 
type of Cartesian constraints. The solution of a general 
set of Cartesian constraints that simultaneously apply to 
the kinematic system, is found through an iterative 
numerical approach (e.g., Newton-Raphson). In this 
approach the constraint manager sets up the Cartesian 
constraint vectors to solve for, and then uses a constraint 
solver to determine the configuration of the kinematic 
system that best solves for the set of Cartesian 
constraints. This approach will handle multiple 
simultaneous constraints.  

6.3. Collision detection algorithm 
The initial implementation of the collision detection 
algorithm in this software package will be to adapt 
Leger’s approach (Leger, 2002). In this approach, the 
geometry of each physical object is defined with a 
hierarchy of composites of bounding shapes. At high 
levels in the hierarchy, one or a few geometric objects 
are used to bound the physical object. At lower levels in 
the hierarchy, a more refined geometric model is possible 
by using many smaller objects (see Figure 5). The 
efficiency of this algorithm is obtained by checking for 
collisions between objects at high levels of the hierarchy 
and penetrating to deeper levels only when a collision is 
found to occur between high-level objects.  
Although currently there is one collision detection 
algorithm, the framework is general enough to support 
multiple collisiton detection algorithms operating on the 
bounding shape tree. 

7. Interfacing mechanism model with CLARAty 
control abstractions 

CLARAty provides a number of control abstractions 
including locomotion and manipulation abstractions. The 
mechanical model for the components defined by these 
abstractions is expressed in terms of the mechanism 
model. In this context the mechanism model can be used 
either as a stand-alone abstraction for kinematic analisys, 
or as part of the control softrware for the robotic system. 
When the mechanism model is used to describe 
abstractions such as manipulator or locomotors interface 
abstractions are defined. These interface abstractions and 
their corresponding control abstractions will enable the 
mechanical sub-system to be controlled independently. 
For example, a system with a rover and a manipulator 
arm can be treated as two independent control systems 
by utilizing the Manipulator_Model and 
Wheeled_Locomotor_Model interfaces for the arm and 
the rover respectively (Figure 7). Alternatively, one can 
use the Mechanism_Model anstraction to simultaneously 
coordinate the arm with the rover motions. 
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